Любая хаотическая система должна иметь нелинейные элементы или свойства. В линейной системе не может быть хаотических колебаний. В линейной системе периодические внешние воздействия вызывают после затухания переходных процессов периодический отклик того же периода (рис. 2.1). (Исключением являются параметрические линейные системы.) В механических системах возможны следующие нелинейные компоненты:

1) нелинейные упругие элементы;

Рис. 2.1. Схема возможных преобразований сигнала в линейных и нелинейных системах.

2) нелинейное затухание, подобное трению покоя и скольжения;

3) мертвый ход, зазор или билинейные пружины;

4) большинство гидродинамических явлений;

5) нелинейные граничные условия.

Нелинейные упругие эффекты могут быть связаны либо со свойствами веществ, либо с геометрическими особенностями. Например, соотношение напряжений в образце из резины и его деформации нелинейно. Однако, хотя соотношение напряжений и деформаций стали обычно линейно вплоть до предела текучести, сильные изгибы балки, плиты или оболочки могут быть нелинейно связаны с приложенными силами и моментами. Подобные эффекты, связанные с сильными смещениями или поворотами, в механике обычно называются геометрическими нелинейностями.

Нелинейные свойства электромагнитных систем обусловлены следующими факторами:

1) нелинейными сопротивлениями, емкостями или индуктивными элементами;

2) гистерезисом в ферромагнитных материалах;

3) нелинейными активными элементами, подобными вакуумным лампам, транзисторам и диодам;

4) эффектами, характерными для движущихся сред, например электродвижущей силой , где v - скорость, а В - магнитное поле;

5) электромагнитными силами, например , где J - ток, или , где М - дипольный магнитный момент.

Примерами нелинейных устройств являются такие обычные элементы электрических цепей, как диоды и транзисторы.

Рис. 2.2. Нелинейные задачи с несколькими положениями равновесия: а - продольный изгиб тонкого упругого стержня под действием осевой нагрузки на торце; 6 - продольный изгиб упругого стержня нелинейными магнитными массовыми силами.

Такие магнитные материалы, как железо, никель или ферриты характеризуются нелинейными материальными соотношениями между полем намагничивания и плотностью магнитного потока. С помощью операционных усилителей и диодов некоторым экспериментаторам удается собрать отрицательные сопротивления с билинейной вольт-амперной характеристикой (см. гл. 4).

Не во всякой системе легко выявить нелинейности, во-первых, потому что мы часто приучены рассуждать на языке линейных систем, а во-вторых, потому что основные компоненты системы могут быть линейными и нелинейность является тонким эффектом. К примеру, отдельные элементы фермы крепления могут быть линейно упругими, но они собраны так, что имеются зазоры и присутствует нелинейное трение. Таким образом, нелинейность может скрываться в граничных условиях.

В примере с изогнутым стержнем нелинейные элементы выделяются без труда (рис. 2.2). В любом механическом устройстве, имеющем более одного положения статического равновесия, присутствуют зазор, мертвый ход или нелинейная жесткость. В случае стержня, изогнутого нагрузкой на конце (рис. 2.2, а), виновником является геометрическая нелинейность жесткости. В стержне, изгибаемом магнитными силами (рис. 2.2, б), источником хаотического поведения системы являются нелинейные магнитные силы.


Предмет: Теория автоматического управления

Тема: НЕЛИНЕЙНЫЕ ЭЛЕМЕНТЫ


1. Классификация нелинейных элементов

Нелинейные зависимости z = f(x) можно классифицировать по различным признакам:

1. По гладкости характеристик: гладкая - если в любой точке характеристики существует производная dz/dx, т. е. функция дифференцируема (рис. 1а, б); кусочно-линейная - характеристика, в которой производные имеют разрыв первого (рис.2а) или второго рода (рис. 2б).

Рис. 3

По симметрии: четно-симметричные - симметричные относительно оси ординат, т. е. z(х) = z (- х) (рис. 4а); нечетно-симметричные - сим-метричные относительно начала координат, при этом z (х) = - z (- х) (рис. 4б); не симметричные (рис. 4в).


Рис. 4

2. Нелинейные цепи

Нелинейными называются цепи, в состав которых входит хотя бы один нелинейный элемент. Нелинейные элементы описываются нелинейными характеристиками, которые не имеют строгого аналитического выражения, определяются экспериментально и задаются таблично или графиками.

Нелинейные элементы можно разделить на двух – и многополюсные. Последние содержат три (различные полупроводниковые и электронные триоды) и более (магнитные усилители, многообмоточные трансформаторы, тетроды, пентоды и др.) полюсов, с помощью которых они подсоединяются к электрической цепи. Характерной особенностью многополюсных элементов является то, что в общем случае их свойства определяются семейством характеристик, представляющих зависимости выходных характеристик от входных переменных и наоборот: входные характеристики строят для ряда фиксированных значений одного из выходных параметров, выходные – для ряда фиксированных значений одного из входных.

По другому признаку классификации нелинейные элементы можно разделить на инерционные и безынерционные. Инерционными называются элементы, характеристики которых зависят от скорости изменения переменных. Для таких элементов статические характеристики, определяющие зависимость между действующими значениями переменных, отличаются от динамических характеристик, устанавливающих взаимосвязь между мгновенными значениями переменных. Безынерционными называются элементы, характеристики которых не зависят от скорости изменения переменных. Для таких элементов статические и динамические характеристики совпадают.

Понятия инерционных и безынерционных элементов относительны: элемент может рассматриваться как безынерционный в допустимом (ограниченном сверху) диапазоне частот, при выходе за пределы которого он переходит в разряд инерционных.

В зависимости от вида характеристик различают нелинейные элементы с симметричными и несимметричными характеристиками. Симметричной называется характеристика, не зависящая от направления определяющих ее величин, т.е. имеющая симметрию относительно начала системы координат. Для несимметричной характеристики это условие не выполняется, т.е. Наличие у нелинейного элемента симметричной характеристики позволяет в целом ряде случаев упростить анализ схемы, осуществляя его в пределах одного квадранта.

По типу характеристики можно также разделить все нелинейные элементы на элементы с однозначной и неоднозначной характеристиками. Однозначной называется характеристика, у которой каждому значению х соответствует единственное значение y и наоборот. В случае неоднозначной характеристики каким-то значениям х может соответствовать два или более значения y или наоборот. У нелинейных резисторов неоднозначность характеристики обычно связана с наличием падающего участка, а у нелинейных индуктивных и емкостных элементов – с гистерезисом.

Наконец, все нелинейные элементы можно разделить на управляемые и неуправляемые. В отличие от неуправляемых управляемые нелинейные элементы (обычно трех- и многополюсники) содержат управляющие каналы, изменяя напряжение, ток, световой поток и др. в которых, изменяют их основные характеристики: вольт-амперную, вебер-амперную или кулон-вольтную.

В зависимости от вида составляющих нелинейных элементов, называют нелинейные цепи.

3. Коэффициент усиления нелинейного элемента

Рассмотрим нелинейный элемент (рис. 5). Подадим на вход нелинейного элемента гармонический сигнал с амплитудой – А 0 и определим первую гармонику выходного сигнала.


При этом для входного и выходного сигналов можно записать следующие соотношения

(1)

где: - модуль вектора; - аргумент вектора.

Рассмотрим характеристику нелинейного элемента -, которая называется комплексным коэффициентом передачи нелинейного элемента. Эту характеристику можно строить в комплексной плоскости также, как и комплексный коэффициент передачи линейной части. При этом характеристика - зависит от частоты сигнала и не зависит от его амплитуды. Характеристика - зависит от амплитуды входного сигнала и не зависит от частоты, так как нелинейный элемент является безинерционным. Для однозначных характеристик его значения является действительными величинами, а для многозначных - комплексными.

Рассмотрим примеры построения комплексных коэффициентов передачи для наиболее характерных нелинейных элементов - .

1. Нелинейный элемент типа "усилитель с ограничением". Характеристики звена показаны на рис. 6. Подобными характеристиками обладают различного типа усилительные и исполнительные элементы автоматики (электронные, магнитные, пневматические, гидравлические и др.) в области больших входных сигналов.

Если амплитуда входного воздействия меньше а, то это обычное линейное безинерционное звено, при этом коэффициент усиления к является постоянной величиной. Фазовый сдвиг между входом и выходом равен нулю, поскольку характеристика нелинейного элемента является симметричной. По мере увеличения амплитуды - коэффициент усиления уменьшается. В некоторых методах исследования нелинейных систем используется характеристика обратного комплексного коэффициента передачи нелинейного элемента (-1/). Эта характеристика приведена на рис. 6.

Так как фазового сдвига между гармониками входного и выходного сигнала нет, то характеристика совпадает с вещественной осью.

Нелинейный элемент типа " зона нечувствительности ". Характеристики звена показаны на рис. 7. Подобными характеристиками обладают различного типа усилители в области малых входных сигналов.

Рис. 7

Если амплитуда входного сигнала расположена в пределах диапазона ± а, то выходной сигнал равен нулю в противном случае выходной сигнал равен не нулю, так как появляются вершины входной гармоники. Фазового сдвига нет. При больших амплитудах входного сигнала коэффициент усиления имеет постоянное значение, т. е. нелинейность не оказывает существенного влияния на выходной сигнал.

3. Нелинейный элемент типа " трехпозиционное реле без гистерезиса". Характеристики звена показаны на рис.8. Эта характеристика присуща релейным системам с обратной связью.

Так как характеристика однозначная, то фазового сдвига нет. Если амплитуда входного сигнала®¥, то выходной сигнал превращается в последовательность импульсов. При малых и больших амплитудах коэффициент k - мал.

Рис. 8

4. Нелинейный элемент типа "релейная характеристика". Характеристики звена показаны на (рис. 9).


5. Нелинейный элемент типа "люфт, зазор". Характеристики данного

нелинейного элемента приведены на рис. 10.

Модели нелинейных элементов. Модели нелинейных элементов могут быть реализованы путем включения в цепь операционного усилителя (на вход или в обратную связь) нелинейных двухполюсников. В зависимости от характеристик двухполюсника и способа его подключения можно реализовать любую нелинейную зависимость (рис. 11а, б, в).


Рис. 11

Модели нелинейных звеньев широко используются при моделировании систем автоматического управления на ЭВМ.


Литература

1. Атабеков Г.И., Тимофеев А.Б., Купалян С.Д., Хухриков С.С. Теоретические основы электротехники (ТОЭ). Нелинейные электрические цепи. Электромагнитное поле. 5-е изд. Изд-во: ЛАНЬ, 2005. – 432с.

2. Бесекерский В.А., Попов Е.П. "Теория систем автоматического управления". Профессия, 2003 г. - 752с.

3. Гаврилов Нелинейные цепи в программах схемотехнического моделирования. Изд-во: СОЛОН-ПРЕСС, 2002. – 368с.

4. Дорф Р., Бишоп Р. Автоматика. Современные системы управления. 2002г. – 832с.

5. Сборник задач по теории автоматического регулирования и управления/ Под редакцией В. А. Бесекерского. - M.: Наука, 1978.

Нелинейными элементами являются все полупроводниковые и электронные приборы, работающие с сигналами, мгновенные значения которых изменяются в достаточно широких пределах. Для конкретности будем рассматривать нелинейные двухполюсники, когда входным сигналом служит напряжение , а выходным - ток
в нем. Все методы и результаты можно перенести и на случай нелинейного четырехполюсника, например, - транзистора, работающего в нелинейном режиме при больших значениях амплитуды входного сигнала. Здесь выходная цепь представляется источником тока, управляемым входным напряжением.Характеристика нелинейного элемента устанавливает функциональную нелинейную связь между напряжением
и силой тока
в нем:

(2.1)

В инерционном элементе мгновенное значение тока
зависит не только от значения напряжения
в тот же момент времени, но и от значений этого напряжения в предыдущие моменты времени.Безинерционных элементов, строго говоря, не существует. Условие безинерционности выполняется приближенно, если характерное время изменения входного сигнала значительно превышает время установления процесса внутри самого нелинейного элемента. Время установления стационарного состояния в полупроводниковых приборах составляет
с.

Инерционность приборов может быть связана с инерционностью носителей тока. С увеличением частоты колебаний она начинает проявляться, когда время прохождения носителей через прибор становится соизмеримым с периодом колебаний. Такая инерционность проявляется в возникновении запаздывания (сдвига) фаз выходного тока относительно входного напряжения, изменении активного входного и выходного сопротивлений и превращении их в комплексные и т. п. В результате обычно уменьшаются коэффициенты усиления усилителей, выходные мощности генераторов. Характерным типом инерционности является тепловая инерционность в изменении температуры, а значит, - и сопротивления терморезисторов. Лишь при достаточно низкой частоте колебаний его температура элемента успевает следовать за мгновенными значениями напряжения. Например, уже при частоте
Гц сопротивление нити лампы накаливания уже практически не успевает изменяться, что обеспечивает равномерное освещение. Подобные инерционные элементы применяют в генераторах гармонических колебаний для улучшения их характеристик.

Расчет нелинейного инерционного устройства можно упростить, если удается представить его соединением двух более простых устройств: нелинейного безинерционного устройства и линейного инерционного устройства (фильтра). Такой подход можно применить, например, для расчета резонансного или полосового усилителя при больших амплитудах входного сигнала. Пусть активный элемент усилителя (транзистор или электронную лампу) можно представить безинерционным нелинейным устройством, а нелинейными искажениями в его пассивной нагрузке (колебательном контуре или системе связанных контуров) можно пренебречь. Нагрузку, содержащую реактивные элементы, аппроксимируют линейным инерционным устройством.

Свойства нелинейных двухполюсников обычно описывают их статическими характеристиками . Общепринятой характеристикой нелинейного резистивного двухполюсника является его вольт-амперная характеристика (ВАХ).

Статическая ВАХ это зависимость тока, протекающего через нелинейный резистивный элемент, от приложенного к нему напряжения в установившемся режиме (или наоборот – зависимость падения напряжения на элементе от протекающего через него тока).

Статическая ВАХ определяет свойства элемента при переменном напряжении (токе) низкой частоты, значение которой не превышает предельно допустимого значения.

В зависимости от числа внешних выводов различают нелинейные двухполюсные элементы (резисторы с нелинейным сопротивлением, электровакуумные и полупроводниковые диоды) и нелинейные многополюсные элементы (транзисторы и тиристоры различных типов, электровакуумные триоды и пентоды).

ВАХ нелинейного двухполюсного элемента может быть симметричной (рис.15.2,а) или несимметричной (рис.15.2,б,в) относительно начала координат.

Рис.15.2 – Статические вольт-амперные характеристики различных

резистивных элеметов

Для симметричной ВАХ справедливо условие I (U ) = -I (-U ), а для несимметричной I (U )  -I (-U ).

Очевидно, что режим работы нелинейной цепи не изменится, если выводы нелинейного резистивного элемента с симметричной характеристикой поменять местами.

Различают нелинейные резистивные элементы с монотонной (рис.15.2,а) и немонотонной (рис.15.2,б,в) ВАХ.

У элементов с монотонной ВАХ увеличение приложенного к элементу напряжения приводит к росту (или хотя бы не уменьшению) тока и, наоборот, увеличение тока приводит к возрастанию напряжения на элементе.

Напряжение и ток на зажимах такого элемента связаны между собой однозначной зависимостью , причем производные ВАХ во всех ее токах принимают только неотрицательные значения , т.е.

,
.

ВАХ нелинейного элемента является немонотонной , если хотя бы в ограниченном диапазоне изменения токов и напряжений рост напряжения на зажимах элемента приводит к уменьшению тока или, наоборот, увеличение тока приводит к снижению напряжения.

Ток и напряжение нелинейного резистивного элемента с немонотонной ВАХ не связаны между собой взаимно однозначной зависимостью (рис.15.2,б,в).

Многообразие всех ВАХ нелинейных двухполюсников можно свести к шести основным типам (рис.15.3,а-е).

ВАХ могут иметь зон нечувствительности, т.е. «ступеньку» по напряжению или по току (рис.15.4,а,б)

Вид ВАХ нелинейного резистивного двухполюсника может зависеть от некоторой величины, не связанной непосредственно с токами или напряжениями цепи, в которую включен данный элемент, в частности от температуры, освещенности, давления и др. Такие элементы относятся к неэлектрически управляемым двухполюсникам.

Так как каждому значению управляющей величины соответствует своя кривая, характеризующая зависимость между током и напряжением на зажимах неэлектрически управляемого резистивного двухполюсника, также двухполюсники характеризуются не одной ВАХ, а семейством ВАХ (рис.15.5).

Рис.15.5 – Семейство ВАХ термистора.

Важнейший класс нелинейных резистивных элементов составляют электрически управлямые элементы (транзисторы различных типов, вакуумные и газоразрядные трехэлектродные и многоэлектродные приборы. Элементы этого типа содержат два основных электрода:

Катод и анод у электронных ламп;

Эмиттер и коллектор у биполярных транзисторов;

Сток и исток у полевых транзисторов.

Сопротивление между основными электродами изменяется под действием тока или напряжения одного или нескольких управляющих электродов:

Сетки у электронных ламп;

Базы у биполярных транзисторов;

Затвора или подложки у полевых транзисторов.

В частности, ток i нелинейного резистивного трехполюсника (рис.15.6), имеющего два основных и один управляющий электрод, является функцией напряжения между основными электродами u и тока управления i упр или напряжения u упр управляющего электрода:

i = i (u , i упр)

i = i (u , u упр).

Рис.15.5 – Электрически управляемый нелинейный трехполюсник

Как видно из рис.15.5, электрически управляемый нелинейный резистивный трехполюсник имеет две стороны: входную (управляющую) и выходную (управляемую), причем один из выводов трехполюсника является общим для обеих сторон.

Электрически управляемые нелинейные резистивные элементы могут быть охарактеризованы различными семействами ВАХ.

Выходные ВАХ отображают зависимость между выходным током i и выходным напряжением u при различных значениях входного тока i упр или напряжения u упр .

Типовые выходные ВАХЪ биполярного транзистора в схеме с общим эмиттером (рис.15.6,а) представлены на рис.15.6,б.

Полная классификация нелинейных элементов представлена в таблице 15.1, а примеры нелинейных резистивных элементов с их условными графическими обозначениями и вольт-амперными характеристиками приведены в таблице 15.2.

Резистивные

1. По виду параметра

Признаки классификации

Табл.29.1 – Классификация нелинейных элементов

Индуктивные

Емкостные

Двухполюсные

2. По количес-тву внешних выводов

Многополюсные

Симметричные

3. По наличию симмет-рии ВАХ

Несимметричные

Монотонные

4. По наличию монотон-ности ВАХ

Немонотонные

С насыщением по току

5. По типу ВАХ

С насыщением по напряжению

S-типа (неоднозначность по току)

N-типа (неоднозначность по

напряжению)

С зоной нечувствительности по току

6. По наличию зоны нечувствитель-ности

С зоной нечувствительности по напряжению

Без зоны нечувствительности

Неэлектрически управляемые

7. По способу управления

Электрически управляемые

Таблица 15.1 – Резистивные НЭ

Элемент, графическое обозначение

Характеристика

Двухполюсные резистивные элементы

Варистор

Симметричная

I (U ) = -I (-U ),

монотонная

Электровакуумный диод

Несимметричная, монотонная ВАХ

(dI /dU ) > 0

Неоновая лампа

ВАХ с падающим участком (dI /dU ) < 0,

несимметричная, немонотонная,

Полупровод-никовый диод

Стабилитрон

ВАХ несимметричная, монотонная

Тоннельный диод

ВАХ с падающим участком, несимметричная, немонотонная, N-типа

Неэлектрически управляемые двухполюсные резистивные элементы

Терморезистор

ВАХ с падающим участком, сопротивление зависит от температуры

Фотодиод

Сопротивление зависит от светового потока

Электрически управляемые трехполюсные резистивные элементы

Биполярный

транзистор

типа n - p - n

Выходные ВАХ

ВАХ несимметрична, монотонна, с насыщением по току.

Выходной ток зависит от напряжения и от входного тока:

I к = I (I Б, U кэ)

Тиристор

ВАХ несимметрична, немонотонна, S-типа, зависит от напряжения на управляющем электроде

2.2. СТАТИЧЕСКИЕ И ДИФФЕРЕНЦИАЛЬНЫЕ ПАРАМЕТРЫ

Для резистивных нелинейных элементов важным параметром является их сопротивление, которое в отличие от линейных резисторов не является постоянным, а зависит от того, в какой точке ВАХ оно определяется. Различают два вида сопротивлений: статическое и дифференциальное (динамическое ).

Статическое сопротивление характеризует рабочую точку нелинейного элемента по постоянному току, а дифференциальное – работу нелинейного элемента в окрестности этой рабочей точки.

Пусть резистивный нелинейный элемент имеет вольт-амперную характеристику, указанную на рисунке 15.8.

Статическое сопротивление – это соотношение напряжения к току в данной точке ВАХ.

(15.1)

где
- масштабный коэффициент;

m u , m i – масштабы по напряжению и току;

 - угол наклона секущей, проведенной через начало координат и рабочую точку, к оси токов.

Статическое сопротивление – это сопротивление нелинейного элемента постоянному току.

Очевидно статическая проводимость есть величина, обратная статическому сопротивлению

(15.2)

– это предел отношения приращения напряжения к соответствующему приращению тока при небольшом смещении рабочей точки на ВАХ под воздействием переменного напряжения малой амплитуды:


Дифференциальное сопротивление это сопротивление нелинейного элемента переменному току малой амплитуды.

Нелинейный элемент

Нелинейным элементом называют элемент, параметры которого зависят от протекающего через него тока или от приложенного к нему напряжения. Типичными нелинейными элементами являются диод и транзистор. Их параметры существенно изменяются при воздействии рабочих токов и напряжений .

Ранее рассматривались линейные элементы, параметры которых не зависят от протекающего тока и приложенного напряжения. Например, в рабочем диапазоне напряжений и токов такие радиоэлементы, как резисторы и конденсаторы, считаются линейными элементами. На рис. 3.1 приведены вольт-амперные характеристики (ВАХ) нелинейного (1) и линейного (2) резисторов. Только при воздействии малых напряжений нелинейные элементы можно приб­лиженно заменять линейными элементами. Например, характеристики диодов и транзисторов линеаризуются, если воздействует напряжение D U < 0,1 В.

Отметим, что кроме линейных и нелинейных элементов использу­ются параметрические элементы, параметры которых зависят от вре­мени . Некоторые свойства параметрических элементов близки к свой­ствам нелинейных элементов, так как на практике изменений параметров добиваются подачей дополнительных сигналов на пара­метрический элемент, и параметры параметрических элементов в ито­ге оказываются зависимыми от напряжений или токов в цепи.

Если в цепи, кроме линейных элементов, содержатся нелинейные резисторы и (или) нелинейные конденсаторы и (или) нелинейные катушки, то такая цепь называется нелинейной . Процессы в такой цепи в общем случае описываются нелинейным дифференциальным урав­нением. Общих аналитических методов решения этих уравнений не существует. Как правило, эти уравнения решают на ЭВМ с помощью численных методов. Например, с помощью численных методов анали­зируются нелинейные цепи в программах схемотехнического модели­рования.

Основные явления, свойственные любой нелинейной цепи, не обя­зательно изучать, составляя и решая сложные нелинейные дифферен­циальные уравнения. Общие свойства нелинейной цепи будут прояв­ляться в простых цепях, содержащих один нелинейный резистор. Кстати, простые нелинейные цепи наиболее часто используются в ра­диоэлектронике. Для их анализа используют один из аналити­ческих методов – метод тригонометрических формул .

В соответствии с методом тригонометрических формул вольт-амперную характеристику нелинейного резистора аппроксимируем полиномом:

где коэффициенты а i (i = 0, 1, 2, …, n ) зависят от вида ВАХ.

Пусть к нелинейному элементу приложено гармоническое напря­жение Для простоты начальная фаза этого напря­жения выбрана равной нулю. Подставляя это напряжение в формулу (3.1), получим ток, протекающий через нелинейный элемент:

Используя известные тригонометрические формулы:

перепишем выражение для тока в виде суммы постоянной состав-ляющей и гармоник тока с кратными частотами (в виде ряда Фурье):

Из анализа выражения (3.2) следует общее свойство нелинейных це-пей – порождать в спектре выходного сигнала новые частоты, кото-рых не было в спектре входного сигнала. Номер наивысшей гармони-ки в спектре выходного сигнала соответствует степени аппроксимирующего полинома.

Как известно, сумма гармоник различных, но кратных частот об-разует периодический сигнал, форма которого отличается от формы гармонического колебания. Следовательно, в нелинейных цепях в об-щем случае искажается форма сигнала . Гармонический сигнал при этом становится негармоническим, треугольный сигнал может стать трапецеидальным и т.п.

На рис. 3.2 показаны спектры входного (рис. 3.2, а ) и выходного (рис. 3.2, б ) сигналов нелинейной цепи, описываемой полиномом треть-ей степени. Как видим, в выходном сигнале появилась по
стоянная со-ставляющая, а также вторая и третья гармоники. Отметим, что воз-никновение новых гармоник, которых не было во входном сигнале, не нарушает законов причинности и сохранения энергии.

Новые частоты, постоянную составляющую и вторую гармонику, можно получить с помощью параметрического элемента – аналогового перемножителя, подавая на него управляющий гармонический сигнал с частотой, точно равной частоте приложенного к элементу входного напряжения.

Свойство нелинейных цепей порождать новые гармоники и иска-жать форму сигнала широко используется в радиоэлектронике при создании разнообразных устройств. Рассмотрим некоторые из этих устройств, наиболее часто встречающиеся на практике.

Нелинейный усилитель

Нелинейный усилитель – это усилитель на работающем в нели-нейном режиме транзисторе, имеющий увеличенный коэффициент полезного действия (рис. 3.3).

Отличительной особенностью схемы является отсутствие по­стоянного напряжения смещения на базе транзистора. Поэтому тран­зистор при отсутствии входного сигнала будет закрыт, и его постоянные токи базы, коллектора и эмиттера будут практически рав­ны нулю. Транзистор будет открываться только при подаче положи­тельной полуволны большого по амплитуде входного напряжения (амплитуда должна быть много больше 0,1 В). Отметим, что в некото­рых нелинейных усилителях может использоваться источник напря­жения смещения. В этом случае напряжение выбирается или запи­рающим, или небольшим открывающим.

Работа нелинейного усилителя описывается с помощью диаграм­мы токов и напряжений (рис. 3.4). На рис. 3.4, а приведена передаточная ВАХ транзистора. Зависимость от времени напряжения на базе транзистора приведена на рис. 3.4, в . Это гармоническое напря­жение поступило через разделительный конденсатор с входных зажи­мов каскада. Как видим, только положительные полуволны вход­ного напряжения открывают транзистор.

Зависимость возникающего тока коллектора от времени (рис. 3.4, б ) получена на основе кривых рис. 3.4, а и 3.4, в . Последовательность построения пока­зана стрелками. Ток коллектора, протекая по резистору R Н (см. рис. 3.3), создает на коллекторе транзистора переменное напряжение (рис. 3.4, г ). Отме­тим, что при увеличении тока коллектора напряжение на коллекторе уменьшается, так как увеличивается падение напряжения на резисторе R Н . Этим объясняется эффект инвертирования фазы сигнала, возни­кающий в каскадах ОЭ.

Форма напряжения на коллекторе транзистора существенно отли­чается от формы гармонического входного сигнала. В этих искажени­ях формы сигнала проявляется свойство нелинейных цепей, обуслов­ленное возникновением в токе транзистора дополнительных гармоник. Для уменьшения искажений используют двухтактную схе­му. В схеме используются два транзистора разных типов, ра­ботающие на общую нагрузку. Причем если транзистор типа п-р-п от­крывается при подаче положительной полуволны напряжения, то другой, р-п-р -транзистор, открывается при подаче отрицательной по­луволны входного напряжения.

Основное преимущество нелинейного усилителя – увеличенный коэффициент полезного действия (КПД). Увеличение КПД объясняется тем, что существенную часть времени транзистор в работающем нелинейном усилителе закрыт и не потребляет энергии от источника питания.

Нелинейные усилители используются в автогенераторах (напри­мер, в импульсных источниках питания ЭВМ), в усилителях мощности (например, в мощных усилителях звуковой частоты), в качестве усилителей-ограничителей, в передатчиках и т.д.

Умножитель частоты

Умножитель частоты – это нелинейное устройство, частота на выходе которого в несколько раз больше частоты входного сигнала. В умножителе частоты используется свойство нелинейных элементов – порождать гармоники с частотами, кратными частоте входного сигна­ла.

Простейшая схема умножителя частоты строится на основе схемы резонансного усилителя (рис. 3.5). При подаче на вход каскада гармо­нического сигнала с большой амплитудой в составе тока коллектора транзистора возникают гармоники с частотами, в целое число раз превышающими частоту входного сигнала. Резонансный контур (нагрузку каскада) настраивают на частоту одной из в
ысших гармоник. На этой частоте в контуре возникает резонанс, а на колебательном контуре и на выходе каскада появляется гармоническое напряжение, частота которого в целое число раз больше частоты входного сигнала. Отметим, что полоса пропускания контура должна быть достаточно малой, чтобы выделялась только одна высшая гармоника.

Расчет выходного напряжения умножителя частоты проводится по формуле:

где – комплексное сопротивление параллельного колебательного контура, – амплитуда n -й гармоники тока коллектора транзистора. При точной настройке параллельного контура на частоту выделяемой гармоники получим: так как реактивное сопротивление катушки индуктивности компенсируется реактивным сопротивлением конденсатора контура.

Умножение частоты в два раза можно получить, используя параметрическую цепь (аналоговый перемножитель) и подавая гармонический сигнал одновременно на оба входа перемножителя. Умножители частоты широко используются в компьютерах для получения увеличенных тактовых частот при использовании относительно низкочастотного задающего кварцевого генератора.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png